

# **Paediatric Eye Disease & Assessment:**

# **Red flags and common complaints**

#### Sandra E. Staffieri BAppSc (Orth)

PhD Candidate, University of Melbourne Clinical Genetics Unit - Centre for Eye Research Australia

Retinoblastoma Care Co-Ordinator / Senior Orthoptist Department of Ophthalmology, RCH





#### **BRIEF:**

- Most common paediatric clinical presentations, treatments what to look for
  - Obvious benign
  - Obvious serious / visually significant
  - Obvious benign or serious?
  - Less obvious serious & important



# **Basic eye anatomy**



#### Posterior segment – 2/3

- Vitreous
- Retina
- Optic Nerve



b/w macula and optic nerve

#### Anterior segment – 1/3

- Adnexa
   (lids/brow/lacrimal apparatus)
- Cornea
- Sclera
- Iris
- Posterior chamber
- Ciliary body
- Lens



# **Refractive error**



#### Emmetropia: No refractive error



# Screening for paediatric eye disease



#### **RED-REFLEX TEST**

| Name of bab                          | у              |            |                           |  |
|--------------------------------------|----------------|------------|---------------------------|--|
| Age of baby (days)                   |                |            | Date of examination / /   |  |
| Name of exam<br>(print and sign n    | miner<br>iame) |            | and strend of the         |  |
| Baby's details                       |                |            |                           |  |
| ength (cm)                           |                |            | Femoral pulses L R        |  |
| Weight (g)                           |                |            | Heart                     |  |
| lead circumf                         | erence (       | cm)        | Chest                     |  |
| Skin                                 |                |            | Abdom                     |  |
| Fontanelles                          | Ant.           | Post.      | Eyes: red reflex test     |  |
| Hips                                 | L              | R          | Ears                      |  |
| Jmbilicus                            |                |            | Mouth                     |  |
| Genitals:                            |                |            | Spine                     |  |
| Testes                               | L              | R          | Anus                      |  |
| Vulva                                |                |            | Limbs upper L R           |  |
|                                      |                |            | Limbs lower L R           |  |
| Discharge de<br>Date of<br>discharge | tails          | Weight (g) | Feeding method<br>(state) |  |
| Referral deta                        | ils            |            |                           |  |
| Referred to:                         |                |            |                           |  |
|                                      |                |            |                           |  |
|                                      |                |            |                           |  |
|                                      |                |            |                           |  |
| Other:                               |                |            |                           |  |
|                                      |                |            |                           |  |
|                                      |                |            |                           |  |

Pre-discharge examination

#### My 2 week visit



#### VISUAL ACUITY

Vision screening

At the 3½ year visit with my Maternal and Child Health norse I will have my visual acuity (clarity of vision) tested using the Melbourne Initial Screening Test (MIST). It is important to note that the WIST is a screening tool and not a diagnostic test. If I receive a 'fail' on the MIST, I will then be referred on for further diagnostic testing.

When I start primary school in Victoria, my parents will be asked to complete the School Entrant Health Questionnaire (SEHQ).

Some of the questions will ask if I have completed the MIST or any other vision screen.

#### My Vision

| Date    | Vision test | Result |
|---------|-------------|--------|
| and the |             |        |
|         |             |        |
|         |             |        |
|         |             |        |



# **Detecting paediatric eye disease**





# What do you need to know?



# • NORMAL V ABNORMAL EYES

- NORMAL visual behaviour
- NORMAL ocular alignment
- NORMAL eye movement
- NORMAL basic eye structure
- IDENTIFY 'AT RISK' CHILDREN FHx eye disease



#### Not all problems have SYMPTOMS – but there will be SIGNS!



- Obvious benign
- Obvious serious / visually significant
- Obvious benign or serious?
- Less obvious serious and important

# **Obvious - benign**

#### **Stye or Chalazion**

- Variable severity
- Annoying not painful
- May resolve spontaneously
- May require Rx:
  - ? warm compress
  - Topical or Oral Antibiotics
  - I&C under GA
  - Mx by GP initially
- Most unlikely to impact on vision







- Obvious benign
- Obvious serious / visually significant
- Obvious benign or serious?
- Less obvious serious and important

# **Obvious – serious / visually significant**



#### **Capillary haemangioma**

- Occlude visual axis
- Induces astigmatism
- Amblyopia
- Treatment conservative
  - Refractive error / amblyopia
- Treatment active
  - Topical/systemic betablockers
  - Local/systemic steroids
  - Sx excision
  - Radiation
  - Laser
  - Injection sclerosing agents



- Sturge-Weber syndrome
- 2<sup>nd</sup> Glaucoma
- Long-term surveillance for glaucoma and Rx PRN

# **Obvious – serious / visually significant**





#### Ptosis (drooping eyelid)

- Visual axis
- Head posture (AHP)
- Induces:
  - Astigmatism
  - Amblyopia
- Treatment conservative
  - manage refractive error & amblyopia
  - +/- Sx when older PRN
- Treatment active
  - Surgery
    - if visual axis occluded
    - AHP interferes
       with motor
       development





- Obvious benign
- Obvious serious / visually significant
- Obvious benign or serious?
- Less obvious serious and important



# Watery Eyes

#### **Obvious – benign – nasolacrimal duct obstruction (NLDO)**







- ~ 20% of infants
- Epiphora
- +/- mucopurulent discharge

#### **Obvious – benign – nasolacrimal duct obstruction (NLDO)**

•



Fig. 21.5 The rate of spontaneous resolution of nasolacrimal duct obstruction expressed as a percentage of those still unresolved at a given age in months.

Hoyt & Taylor 2013 Ped. Oph. & Strab. 4th Ed.

- Treatment *conservative* 
  - ~ 12/12 of age
  - Eye toilet saline; dry
  - Massage
  - +/- g/oc antibiotic for local infection
  - NOT conjunctivitis
  - Treatment active
    - Probe & syringe (Dx and Tx)
    - Intubation Crawford tube
    - Dacryocystorhinostomy
  - Treatment indications
    - Unresolved epiphora
    - \*social



Children

#### Fluorescein dye disappearance test

- Dye normally disappears by 5 minutes
- Retained dye = obstruction
- Mucocoeles pressure on lacrimal sac produces reflux of fluorescein stained mucous

## **Obvious – benign/serious – cong. dacryocystocoele**



- Tense, bluish swelling below the medial canthus
- Obstruction breathing difficulties
- Treatment conservative
  - 1<sup>st</sup> 2 weeks of life watch & wait
  - Most spontaneously resolve
- Treatment active
  - Endoscopic drainage
  - +/- excision nasal mucosa over dacryocystocoele
- Treatment indications
  - Breathing difficulties
  - Acute dacryocystitis



#### **Obvious – benign/serious – epiblepharon**





- Tight lower lids
- Soft newborn lashes V course adult lashes
- Epiphora/rubbing/+/- photophobia
- Ethnic variation
- Treatment conservative
  - Watch & wait
  - +/- ocular lubricants
  - Spontaneous resolution ~ 5-6 yo
- Treatment active
  - Surgical Quickert sutures
- Treatment indications
  - Corneal ulceration/scarring



# ...but when do I worry?



- RED EYE
- LIGHT SENSITIVE
- Unsettled baby/pain
- 'sick'

#### **Obvious – serious – preseptal cellulitis**



# • RAPIDLY progresses ORBITAL CELLULITIS

- > Urgent
- Blinding



- 5 x more common than orbital cellulitis, esp. under 5-6 years
- Associated with:
  - Lid & cutaneous infections (stye, varicella, dacryocystitis HSV
  - URTI and sinusitis
  - Lid trauma
- Generally 'unwell', febrile
- Treatment conservative
  - Oral antibiotics
- Treatment active
  - IV antibiotics
  - ? CT assess orbital/sinus/brain involvement

#### **Obvious – serious – congenital/infantile glaucoma**



- Epiphora / photophobia
- Opaque cornea
- Buphthalmos
- Unsettled/vomiting





#### Descemet's membrane splits

• Influx of aqueous into corneal stroma

Buphthalmos – "ox" [large] eye

Infant sclera stretches

# Pathophysiology - glaucoma





#### Types:

- POAG primary open angle
- AAC acute angle closure
- Secondary trauma/inflammation
- Congenital
- Familial/hereditary



#### Characterised by:

- Raised intraocular pressure [IOP]
- Visual field loss
- Congenital glaucoma
  - Opaque cornea
  - Epiphora
  - Photophobia

#### **Obvious – serious – congenital/infantile glaucoma**

The Royal Children's Hospital Melbourne



- Familial/Hereditary
- Difficult to control
  - Surgery
  - Topical eye drops
- Induces:
  - Myopia
  - Amblyopia
  - Optic nerve damage
  - Visual field defects





#### Descemet's membrane splits

Influx of aqueous into corneal stroma

Buphthalmos - "ox" [large] eye

Infant sclera stretches



# Unequal Pupils

#### **Obvious – benign/serious – anisocoria** (unequal pupils)









#### Physiological anisocoria

- ~ 20% of infants
- Minimal difference
- No change in dark

#### Horner's syndrome

- Anisocoria increases in dark affected side doesn't dilate
- Ptosis
- Heterochromia
- ?? Neuroblastoma
  - Most common extracranial solid tumour
  - 9% of all childhood cancers, 33% of deaths
  - Pain/fever/weight loss
  - Cerebellar signs
  - Diarrhoea
  - Hypertension with flushing check catecholasmines



- Obvious benign
- Obvious serious / visually significant
- Obvious benign or serious?
- Less obvious serious and important



# **Visual Acuity**



#### Vision develops very quickly....





#### .....from birth until at least 7 years of age

# Visual Behaviour V Visual Acuity



 OBSERVING VISUAL BEHAVIOUR IS NOT SURROGATE FOR ACUITY AND FUNCTION



#### Not obvious – important



# Amblyopia = AVOIDABLE BLINDNESS

Definition: reduction in vision that persists after any pathology is removed or corrected

#### Most common cause:

- unequal refractive error (anisometropia/lazy eye)
- strabismus (squint/eye turn/lazy eye)

#### Treatment

- Correction with spectacles
- Patching of the good eye
- Treat up to ~ 7-8 yo



#### **NEVER TO YOUNG, OFTEN TOO OLD!**

# "MY BABY DOESN'T SMILE AT ME!"



# **Delayed Visual Maturation - DVM**



- Delay in achieving normal visual milestones
  - Not fixing or following by 2-4 months
  - Normal eye examination
    - No nystagmus, normal pupil reflexes
  - Neurological development normal
- Spontaneous improvement by 6 months
- Cause unclear
- Associated with subsequent learning/motor delays



# **Cortical Vision Impairment - CVI**



- Loss of 'vision' due to cerebral insult
- Normal pupil reflexes and eye examination
- Roving eye movements
- Common causes
  - Perinatal hypoxic-ischemic insult
  - Hydrocephalus
  - Prematurity (PVH\*, PVL\*)
  - Non accidental injury

\*PVH: periventricular haemorrhage \*PVL: periventricular leukomalacia

#### Less obvious – serious & important





Strabismus



Intraocular disease



Unilateral vision loss

- Not 'obvious' to look at
- Infrequent/intermittent
- Child is otherwise well or not complaining
- Child appears to "see" well functions normally 'visually'



# Strabismus

# **Binocular Vision**





www.visioncdl.com

#### Strabismus – "squint that goes away"



#### **Transient neonatal strabismus**

#### **Pseudo-strabismus: Optical Illusion**



- NORMAL ocular alignment
- intermittent
- Resolves by 2-4 months<sup>1,2</sup>

<sup>1</sup>Horwood A. 1993, JAAPOS; <sup>2</sup>Sondhi N. et al. 1988 JAAPOS





- Wide nasal fold/bridge of nose
- Intermittent looking sideways
- "see both ears"
- Corneal light reflex symmetry

#### True strabismus – variable direction, size and frequency







CAUSE? – secondary cause until proven otherwise
> EFFECT ON VISION DEVELOPMENT – AMBLYOPIA

## **Straightforward squint...?**





#### **Primary strabismus**

- 2-4% population<sup>2,3</sup>
- Multiple associations<sup>1</sup>
  - FHx strabismus/amblyopia
  - Hyperopia/anisometropia
  - Prematurity
  - Down's syndrome
  - Developmental delay
  - Cerebral palsy
  - Fetal Alcohol Syndrome
  - Craniofacial syndromes
- 83% amblyopia  $< 3 \text{ yo}^{2,3}$
- Stereopsis [3D vision]<sup>4</sup>





#### Treatment

- Glasses refractive error
- Occlusion amblyopia
- Surgery

# Sinister sign...?

#### **Primary Neurological Disorder**

- Optic nerve glioma
- Medulloblastoma
- Craniopharyngioma
- Hydrocephalus

#### > ADDITIONAL SYSTEMIC Symptoms





#### Intraocular disease

- Cataract
- Coat's disease
- Ocular toxocara
- PHPV
- Retinoblastoma

#### WELL CHILD NORMAL VISION (UNI) Lesion disrupts binocular vision

#### Intraocular disease disrupts binocular function





- Central vision is disrupted
- No incentive for the eyes to remain straight
- Affected eye will 'wander' in or out

www.visioncdl.com

# Straightforward squint... or sinister sign?







# Leukocoria

"Leuko" – white "Coria" – pupil





#### **Causes of leukocoria in children**

| Cause of Leukocoria in Children                                                       |       |
|---------------------------------------------------------------------------------------|-------|
| Congenital cataract                                                                   | 60%   |
| Retinoblastoma                                                                        | 18.2% |
| Retinal Detachment                                                                    | 4.2%  |
| <b>PHPV</b> (persistent hyperplastic primary vitreous/persistent fetal vasculature)   | 4.2%  |
| Coats' disease                                                                        | 4.2%  |
| Coloboma: iris/choroid/retinal                                                        | 2.8%  |
| Infection:<br>Ocular toxocara/Endophthalmitis/Panendophthalmitis/Posterior<br>Uveitis | 5.6%  |



Cataract



PHPV



Toxocara



The Royal Children's Hospital Melbourne





Coat's disease





# **Congenital cataract**

- Leading cause of childhood blindness
- Congenital *OR* develops during early childhood
- Complete or partial
- Familial
- Unilateral or Bilateral
- Differential diagnosis vital
- Early diagnosis imperative
- URGENT

# **Causes of cataract in children**

#### The Royal Children's Hospital Melbourne

#### Intrauterine infections

• Rubella, Varicella, Toxoplasmosis, HSV

#### **Drug Induced**

Corticosteroids, chlorpromazine

# **Metabolic Disorders**

- IDDM, Galactosaemia,
- Hypocalcaemia, Hypoglycaemia

#### Trauma

- Blunt/penetrating injury,
- AI/NAI, laser photocoagulation

## Radiation induced

# Inherited

AD/AR/X-linked

#### Chromosomal

- Trisomy 13, 18, 21 (Down's), Turner & Cri-du Chat Syndro
   Renal Disease
- Lowe, Alport & Hallerman-Streff-Francois syndrome
   Skeletal Disease
- Stickler, Rubenstien-Taybi, Bardet-Biedl, Conradi syndror

#### Neurometabolic Disease

Zellweger syndrome

#### **Muscular Disease**

#### Dermatological

- Cockayne syndrome, Incontinentia pigmenti, progeria
- Crystalline cataract & uncombable hair syndrome!

#### Treatment





- Very long road
- Surgery
- Glasses/CL/IOL
- Occlusion
- NOT the same as ADULT cataract







- Amblyopia
- Strabismus (& binocular function)
- Aphakic glaucoma\*
  - Timing of surgery



# "Isn't it just the camera flash?"





#### Retinoblastoma

- 1:15-20 000 births VIC/TAS 1:17 500<sup>1</sup> (4-5 new cases/year)
- all childhood cancers: 9.1% <1yr; 3% 1-4yr

..." once uniformly fatal, now uniformly curable..."

Grossniklaus (LXXI Edward Jackson Memorial Lecture AJO







<sup>1</sup>Dondey J, Staffieri SE *et al. 2004 Clin.Exp.Ophth* 

#### Retinoblastoma



Leukocoria – white pupil



Strabismus – squint



FHx - *RB1*+ - AD - 50% risk



#### Anterior segment disease

18 16 14 61% 12 10 8 6 27% 4 12% 2 0 Leukocoria Strabismus OTHER

Source: Victorian RB Database DRN DB#090 est. 1992



#### Retinoblastoma

- Fleeting
- Dim light
- Photograph
- Not seen with naked eye







- "glint"
- "glow"
- hologram"
- "cat's eye reflex



#### **Barriers to early diagnosis - leukocoria**



Red-eye reduction



Photoshop



www.thelancet.com Vol 379 June 30, 2012

Murphy D at al Langet 2012



Retinoblastoma

Artefact - desensitised



#### Artefact – optic nerve



Optic nerve

CEL MA

When a retinoblastoma tumour is present, it prevents the light of a camera's flash from reaching the retina for processing.

The light is therefore reflected out of the eye, appearing in the photograph as a white glow or absence of a normal red reflex.



# **Identifying tumours early...**





Staffieri SE et al. PrenatDiag.2015

## Early diagnosis saves eyes

|                                | Family History RB | No Family History RB                                                   |
|--------------------------------|-------------------|------------------------------------------------------------------------|
| Unilateral:<br>Enucleated eyes | 0/2 (0%)          | 44/48 ( <mark>91.7%</mark> )                                           |
| Bilateral:<br>Enucleated eyes  | 1/22 (4.5%)       | 17/34 (50%)<br>(4 children saved BE)<br>(4 children both eyes removed) |

RCH 2000 - 2018



Source: Victorian RB Database DRN DB#090 est. 1992







#### Strabismus can be a very early sign



- 4.5 month old; ex-33/40
  - (3 month corrected)
- Several weeks Hx L intermittent strabismus
- Reassured paediatrician
  - 'strabismus' was normal at this age
  - Risk factor premature
  - No examination



#### Strabismus can be a very early sign

• 8 day Hx leukocoria





# Take home messages.....



- Know what NORMAL looks like what you notice may be critical
- Observe children carefully [and their parents!]
- Family History of disease [strabismus, amblyopia, cataract, glaucoma, retinoblastoma]
- Fleeting or intermittent disease
  - Building rapport with parent trust & confidence to discuss their observations or concerns
- Visual behaviour ≠ good and equal vision

# **Acknowledgements**

The authors gratefully acknowledge the families who have provided photographs used in this presentation.

#### sandra.staffieri@rch.org.au

Alternate (to RCH) ophthalmologist providers

https://www.rch.org.au/uploadedFiles/Main/ Content/ophthal/Alternate%20Eye%20Care%2 OProviders.pdf



Children

