

Infant Nutrition – What's new?

Angela Harris, Clinical Dietitian Royal Children's Hospital, Melbourne 2017

ACKNOWLEDGEMENTS TO THE DIETITIANS AT RCH

Overview

- Growth
- Infant formula update

Growth

Melbourne Children's A world leader in child and adolescent health

Assessment of Infant Growth

- WHO growth charts
 - 0-2yrs
- Weight, length and head circumference
- Trend over time

Assessment of Growth

꽳

Growth charts for clinical conditions:

- Fenton growth charts (Premature infants)
- Down Syndrome Growth Charts
 - Use the same chart each time
- Turner Syndrome
- Cerebral Palsy
- And more.....

Use with caution

Expected Growth in Infancy

Age	Expected weight gain
0-3 months	200g/week (20-30g/day) Or 15g/kg/day
3-6 months	150g/week
6-9 months	100g/week
9-12 months	50-75g/week

Growth Consideration

<section-header><section-header><text><figure>

1-month weight increments (g) GIRLS Birth to 12 months (percentiles)								World Health Organization			
3 - 4 mo	133	214	259	376	448	585	726	804	937	990	1090

http://www.rch.org.au/childgrowth/Growth_Charts/

- Consider growth velocity at different centiles
- Each child gains 250g in a month

3rd centile

Faltering growth

- Previously called 'Failure to thrive'
- Weight more than 2 major centiles < height
- \downarrow 2 major centiles for weight or height
- < 80% weight for height
- BMI < 3rd centile
- Organic vs Non-Organic

Interpreting growth charts

- Low weight for height

 → short term depletion

 Low height for age
 - \rightarrow chronic poor nutrition
- Low weight for age
 → further assessment

Weight-for-age GIRLS

Birth to 2 years (percentiles)

Length-for-age GIRLS

Birth to 2 years (percentiles)

Nutritional Aims

謎

- Prevent further faltering
- Achieve catch up growth
- Establish healthy feeding patterns and behaviour
- Ensure growth and development achieved

Strategies to achieve catch up growth

Breastfeeding

- Assessment of latch
- Regular feeding / expressing
- Fortification of EBM
- Formula top ups
- Use of a concentrated glucose polymer or fat supplementation solution
- Referral to lactation consultant

Strategies to achieve catch up growth

- A number of strategies to use
- Monitor weights regularly
- Refer to the dietitian

Other growth considerations

Weight-for-age GIRLS

Birth to 2 years (percentiles)

Length-for-age GIRLS

Infant formulas

Breast milk

- Easily digested
- Adapts as the infant grows
- Breast milk is difficult to replicate
- Contains immunoglobulins
- Numerous benefits
 - Lower incidence of NEC, gastroenteritis, coeliac disease, inflammatory bowel disease
 - Lower risk of childhood obesity and other cardiovascular risks

Infant formula

Formulation protected by

 Codex Alimentarius – internationally recognised set of standards for food & food safety

• FSANZ P2.9.1

- Provides standards for macro- and micro- nutrient composition
- Regulates allowable additives eg. nucleotides and other nutritive substances
- Microbiological standards
- Quality, composition and labeling of formula

Currently undergoing a review

Marketing in Australia of Infant Formula (MAIF)

- WHO developed international code of marketing of breast-milk substitutes in 1981
- Australia's response to the WHO code
- Voluntary self-regulating agreement to signatories
- Contribute to the provision of safe and adequate nutrition for infants:
 - Protection & promotion of breastfeeding
 - Proper use of breastmilk substitutes
 - Appropriate marketing & distribution
 - Contact with health professionals

ESPGHAN Global Standard for Composition of Infant

- **Formula** should "contain components in amounts that serve a nutritional purpose or provide another benefit. The inclusion of unnecessary components may put a burden on metabolic and other physiological functions of the infant" (Koletzko *et al*, 2005)
 - Energy; 250-295kJ/100ml
 - Protein; 1.8-3g/100cal (1.2-2.0g/100ml)
 - Iron minimum 0.1g/100kJ

Protein content

Breastmilk is protective against later obesity

Protein is thought to be a key factor

Fig. 1. Effect of breastfeeding vs. formula feeding on childhood obesity: covariate- adjusted odds ratios of 9 studies and pooled adjusted odds ratio (AOR). (Adapted from Koletzko, 2006¹).

Fig. 2: The Early Protein Hypothesis (Adapted from Koletzko et al. 2011²)

Protein in Breast milk

Evolution of Protein Content in Breast Milk

How much protein are infants having?

Fig. 6: Average protein intake at different age points. (Adapted from Lioret et al. 2012⁸)

Benefits of lower protein

Quantity resulted in a BMI z-score closer to breastfed infants at 6, 12 and 24 months

Mean z scores (with 95% CIs) for BMI in children at baseline (0–8 weeks of age) and at 3, 6, 12, and 24 months of age

Adapted from Koletzko 2009. **, ***Significantly different from the lower-protein group (ANOVA adjusted for baseline value): **p<0.01, ***p<0.001. Double-blind, randomised controlled trial comparing two groups of children each fed 2 types (standard and follow-on) of cow's milk–based formula with either a lower or higher protein content for the first year of life. Both groups were compared with an observational breastfed group. The formulas differed in the content of cow's-milk protein (2.05 vs with 1.25 g/dL in infant formula and 3.2 vs with 1.6 g/dL in the follow-on formula, respectively) but had identical energy contents achieved by adjustment of total fat content. All other compositional aspects of the two types of formula were similar.

BMI: body mass index; CI: confidence interval

Benefits of lower protein quantity

Reducing the protein content of infant formula does make a difference. Fig. 9: Obesity at the age of 6 years: Children in the HP=group have 2.43 times the risk of those in the LP-group of being obese at the age of 6 years

(Adapted from Weber et al. 201410)

NHMRC Recommendations

- NHMRC have recommended that a lower protein formula is preferable for formula fed babies.
- A number of companies have reduced the protein content of their infant formula closer to that of breast milk

Other additives

- Long Chain Polyunsaturated Fatty Acids (LCPUFA)
- Nucleotides
- Lutein
- Probiotics
- Prebiotics

LCPUFA

- Considered to play a crucial role in eye and brain development.
- DHA is a bioactive omega-3 polyunsaturated fatty acid that influences:
 - Membrane structure and function
 - Cell signalling and communication mechanisms
 - Gene expression
 - Lipid mediator production

Nucleotides

- ***
- Non protein amino acids found abundantly in breast milk
- Breastfed infants ingest 1.4-2.1 mg of nucleotide nitrogen per day
- Unknown whether immunomodulating effects are translated into clinical benefits in well nourished infants

Lutein

- Much higher concentration in breast milk
- Evidence is inconclusive

Prebiotics

- Food for the GIT and gut flora
- Stimulate the growth of probiotics
- Alter the composition of the gut flora (microbiome) Agostoni *et al*, 2004
- Found naturally in breast milk
- Oligosaccharides (GOS + FOS)
- Recently permitted in infant formula
- Limited evidence

Probiotics

- Live organisms which have proven benefits by adding beneficial bacteria to the GIT
- Bifidobacteria, lactobacillus
- Associated with immunity and increased absorption of nutrients

Benefits of Probiotics

- Protection from NEC in preterm infants
 Cochrane review 2014
- Treatment of antibiotic and non-antibiotic associated rotavirus illness in infants
- Evidence for a possible link to reduction in colic symptoms in babies

Floch et al, 2008 & Alfaleh et al

Probiotics in Infant formula

- ***
- More commonly added to infant formulas
- Bifidobacterium and lactobacillus
- Controversial with regards to preparation of formula
- Two Cochrane reviews and a review by ESPGHAN concluded there was

"insufficient evidence to support their use"

Questions?