

Clinical Update: Jaundice **Tongue Tie** Hot topics in Lactation Research

DR GILLIAN OPIE Neonatal Paediatrician, IBCLC Mercy Hospital for Women Heidelberg, Victoria

MCHN: October 2018

Jaundice

Early or Prolonged or Late

Early Jaundice

\Rightarrow 24 hours – 10 days age

♦ Very common – 60 % infants born at term

♦ Peaks 3 - 4 days of life

Recognise risk factors – may need treatment

Risk Factors – early jaundice

- Mothers with a positive antibody screen
- ♦ A previously affected sibling
- Cephalhaematoma, bruising and trauma from instrumental birth
- Delayed passage of meconium
- \diamond Prematurity
- Dehydration
- Inadequate breastfeeding
- ♦ A family history of G6PD deficiency
- ♦ ABO incompatibility
- \diamond Rh incompatibility

Kramer's rule

Zone	Head and neck	Chest	Lower body and thighs	Arms and legs below knees
SBR (mol/L)	100	150	200	250

Wide inter-observer variation Unreliable in infants with pigmented skin

DO NOT RELY ON VISUAL INSPECTION

Source: Neonatal eHandbook

Shade for phototherapy

Management – early jaundice

Unwell Not feeding well Poor weight gain

Refer to "Birth Hospital" ED Same day

8

Early Jaundice

Sudden re-appearance of jaundice

- always pathological
- haemolysis is first consideration (+ dark urine ? G6PD)
- infection possible (UTI often)

ACTION = urgent referral to hospital ED

Prolonged jaundice

Persists beyond 10 -14 days of life

Always needs investigation to exclude pathological causes

♦ Unwell or lethargic ♦ Feeding poorly Poor weight gain / weight loss Abnormal bowel actions

Prolonged Jaundice

Causes

- Infection UTI
- Haemolysis \diamond
- Hypothyroidism (not always identified with NST) \diamond
- Rare congenital inborn errors of metabolism (Galactosemia) \diamond
- Breastmilk jaundice diagnosis of exclusion \diamond

Check Vitamin K given at birth

Prolonged Jaundice

Dark, tea coloured urine

Pale lemon / chalky stools

BILIARY ATRESIA MUST BE CONSIDERED

Late Jaundice

Jaundice appears after day 10 – 14 of life Always pathological

 \Rightarrow Failure to thrive \diamond Lethargy

ACTION = URGENT REFERRAL

Jaundice: "muddy green / brown in colour

Late Jaundice - Pathology

- 1. Biliary Atresia
- 2. Biliary Atresia
- 3. Biliary Atresia

Choledochal cyst Neonatal hepatitis Metabolic syndromes

Jaundice - Summary

Common

Early: risk factors

- refer especially of baby is unwell, feeding poorly or not gaining weight Prolonged: needs diagnosis

- Breastmilk jaundice is diagnosis of exclusion Late: ? Biliary Atresia

Sudden re-appearance of jaundice Dark urine ± pale bowel action Failure to thrive Unwell

Tongue Tie: "to snip or not to snip"

Impact

- Delayed oral development / dental caries Feeding problems
- difficulty in establishing breastfeeding / poor weight gain \diamond
- latch issues / maternal pain / low supply \diamond
- Licking ice-creams
- Speech problems (articulation)
- Swallowing problems (aerophagia)
- \diamond Intimacy problems (kissing)

4 - 11% of newborns

40 - 50 % of infants with TT display breastfeeding difficulties

 \diamond More common in males 1.5-2.6:1

✦Familial correlation is seen \diamond Gene mutation, TBX22, manifests as heritable TT with cleft lip and palate

Type 1 Anterior

Coryllos 2004

Frenulum attached at tip of tongue

Type 2 Anterior

Coryllos 2004

Frenulum attaches 2 – 4 mm behind tip

Type 3 Mid

Coryllos 2004

Frenulum attaches in mid-tongue position

Type 4 Posterior

Coryllos 2004

Frenulum attached at base of tongue

Lip tie

Maternal symptoms

- Nipple appearance after feeding
 creased, flat or blanched
 Nipple trauma
 cracked, blistered, bleeding
- Discomfort whilst feeding
- Blocked ducts
- Thrush or mastitis
- Sleep deprivation

Baby symptoms

- Difficulty latching
- Gumming / chewing whilst feeding
- Gassiness / aerophagia
- Poor weight gain
- Excessive drooling
- Inability to adequately drain breast
- Choking on milk / coming off to gasp during feeding
- Falling asleep during feeds, then waking a short time later to feed again
- Sleep deprivation
- Long feeding time
- Clicking during sucking

ding t time later to feed again

HCP opinion

- Messner* surveyed 1500 health professionals
- \$\log 90\% paediatricians and 70\% ENT surgeons indicated TT
 never or rarely caused problem
- Most LC's believed TT did cause problem, particularly with breastfeeding simply relieved by frenotomy
- AAP and NICE acknowledge TT is significant entity which should be treated early to avoid breastfeeding problems

*Messsner AH. Int J Pediatr Otorhinolaryngol. 2000;54:123-31

ionals eons indicated TT

Frenotomy: feeding

	Fren	otorr	iy	Control		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	
1.1.1 IBFAT scores following procedure									
Buryk 2011 Subtotal (95% CI)	11.6	0.8	30 30	8.1	0.9	28 28	100.0% 100.0 %	3.50 [3.06, 3.94 3.50 [3.06, 3.9 4	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 15.6	1 (P <	≠ 0.000	01)					
1.1.2 LATCH scores f	ollowing	ргос	cedure						
Emond 2013	8.4	1.8	53	8.5	1.6	52	73.4%	-0.10 [-0.75, 0.55	
Dollberg 2006 Subtotal (95% Cl)	6.8	2	25 78	6.8	1.9	25 77	26.6% 100.0 %	0.00 [-1.08, 1.08 - 0.07 [-0.63, 0.48	
Heterogeneity: Chi ² = Test for overall effect:	0.02, df = 0.26	= 1 (F (P =	? = 0.88 በ 8በነ	3); I ^z = 01	%				

Test for subgroup differences: $Chi^2 = 97.28$, df = 1 (P < 0.00001), $l^2 = 99.0\%$

Cochrane Database of Systematic Reviews 11 MAR 2017 DOI: 10.1002/14651858.CD011065.pub2 http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD011065.pub2/full#CD011065-fig-0004

Frenotomy: Nipple pain

Review: Frenotomy for tongue-te in newborn intants Comparison: 1 Frenotomy versus no trenotomy or sham procedure Outcome: 3 Maternal nipple pain assessed by a validated pain scale

Study or subgroup	Favours trenoto N	my Mean(SD)	Control N	Mean (SD)	Mean Difference IV,Fixed,95% Cl	Weight	Mean Difference IV,Fixed,95% Cl
1 Visual analogue pain scal Berry 2012	le 14	1.6 (1.5)	14	2.9 (1.5)		30.3 %	-1.30[-2.41, -0.19]
Dollberg 2006	25	5.3 (2.2)	25	5.5 (1.9)		28.8 %	-0.20 [-1.34, 0.94]
Emond 2013	53	3 (2.4)	52	3.7 (2.6)		40.8 %	-0.70[-1.66, 0.26]
Subtota I (95% CI) Heterogeneity: Chi≏ = 1.85, Test for overall effect: Z = 2.3	92 d1 = 2 (P = 0.40); 6 (P = 0.018)	l² - 0.0%	91			100.0 %	-0.74 [-1.35, -0.13]
2 SF-MPQ pain scale Buryk 2011	30	4.9 (1.5)	28	13.5 (1.5) 🖪		100.0 %	-8.60 [-9.37, -7.83]
Subtotal (95% CI) Heterogeneity: not applicable Test for overall effect: Z = 21.	30 82 (P < 0.00001)		28			100.0 %	-8.60[-9.37, -7.83]
Test for subgroup differences	s: Chi² - 244.49, (di = 1 (P = 0.00)), l≈ =100%				
				-4 Favours trenotomy	-2 0 2 Favours	4 control	

Cochrane Database of Systematic Reviews

11 MAR 2017 DOI: 10.1002/14651858.CD011065.pub2 http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD011065.pub2/full#CD011065-fig-00103

48 hours: Parent assessment of feeding

	Frenotomy		Control		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	
Berry 2012	21	27	14	30	93.1%	1.67 [1.08, 2.57]	
Hogan 2005	27	28	1	29	6.9%	27.96 [4.07, 192.12]	
Total (95% CI)		55		59	100.0%	3.48 [2.18, 5.56]	
Total events	48		15				
Heterogeneity: Chi² = 15.63, df = 1 (P ≤ 0.0001); I² = 94%							
Test for overall effect: $7 = 5.22$ (P < 0.00001)							

Cochrane Database of Systematic Reviews 11 MAR 2017 DOI: 10.1002/14651858.CD011065.pub2 http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD011065.pub2/full#CD011065-fig-0005

Cochrane Conclusion

Improved maternal nipple pain No consistent effect on infant feeding No serious complications However Quality of evidence low – moderate Only 5 studies Study design not optimal: controls offered frenotomy

NICE Guidance: 2005*

Evidence found similar result as recent Cochrane **Specialist advisors**

- Considered procedure established practice
- Frenotomy more commonly performed for speech issues
- Selection must be careful to ensure only problematic TT are divided
- Alternative option is counselling and advice from LC Noted controversy regarding significance of TT in relation to breastfeeding difficulties

* National Institute Clinical Excellence UK. Minor maintenance 2012

Timing of frenotomy

- \Rightarrow 107 term infants < 2 weeks age randomised
- Outcome: feeding 5 days post frenotomy or advice only
- ♦ Eligibility : HATLFF score 6 12, LATCH score ≤ 8
- Control group 15.5 % increase in bottle feeding vs frenotomy 7.5% increase
- ♦ 44 of 52 controls requested frenotomy
- Conclusion: early frenotomy did not improve breastfeeding but did improve maternal self efficacy

Emond. Arch Dis Child FN Ed 2014;99:F189

Laser Frenotomy

- No published studies comparing efficacy of laser vs scissors
- \diamond Laser is more time consuming than scissors
- \diamond Parents are not able to be with baby during procedure
- Delayed onset pain vs immediate with scissors
- Expensive (equipment costs) \diamond
- Dentists most familiar with laser oral surgery
- Post procedural complications higher

Tongue Tie - Summary

- \Rightarrow 50 % of infants with short, tight frenulum will not have difficulty breastfeeding
- Milk may have to "come in" before efficiency of breastfeeding can be evaluated
- Symptomatic tongue-tie needs specialist evaluation for consideration of frenotomy (simple and safe)
- Basic ethic of avoiding unnecessary procedures
- Published evidence remains controversial on benefit for infant breastfeeding however maternal self efficacy definitely benefits

Hot Topics in Lactation Research

ISRHML

International Society for Research in Human Milk and Lactation

October 7 – 11, 2018

Japan

Breastfed infants (population survey)

 \Rightarrow higher rate dental caries when breastfed > 6 months

\diamond iron deficiency

- do not routinely practice delayed cord clamping as about jaundice due to polycythemia worried
- first foods are not iron fortified
- CMV infection in premature infants: \diamond
 - source mother's own milk

INSPIRE project

8 different countries

Exploring variations / similarities in maternal and infant microbiome Includes breastmilk microbiome

412 women and their babies

INSPIRE findings

Common bacteria in different proportions according to region all breastmilk has Streptococcus, Staphylococcus and Corynebacterium

Influence of diet no milk – more firmicutes meat eaters – more propionibacteria

HMO's

Human Milk Oligosaccharides are complex sugars

Lactose at reducing end Add Fucose Sialic acid Disaccharide

150 – 200 variations producing individual "Fingerprint"

Later Benefits of HMO's

♦ Obesity

- Cows Milk Allergy
- Chronic Inflammatory disease
- Cognitive Development

Anti-microbials

- A Bacterial, viral, and protozoan infections are most common causes of infant mortality.
- \diamond Many of these pathogens use lectins (glycan-binding) proteins), to attach to on epithelial surfaces,
- \Rightarrow HMO resemble some of these cell surface glycans,
- \diamond serve as decoy receptors that block pathogen attachment
- \diamond HMO act as anti-adhesive antimicrobials, part of the innate immune protection provided with human milk

HMO and Microbiome

Specific Bacteroides and Bifidobacterium species that commonly colonize breastfed infants efficiently utilize HMO as carbon sources. (eg B. infantis)

HMO fermentation by microbiotia produces short-chain fatty acids promoting the growth of beneficial bacteria.

Gut bacteria and the immune response are tightly interrelated

More Milk for Daughters

2 large long-term population studies compared CHILD (2009 – 2012) vs ALSPAC (1990's)

 \diamond no difference in breastfeeding intention or initiation \diamond at 4 months age boys significantly less likely to be breastfed \Rightarrow boys 15 – 44% more likely to receive formula sons 36-43% more likely to be fed solids earlier \diamond boys more likely to stop breastfeeding 2.5 weeks earlier than girls

Animal studies show mothers synthesise sex differentiated milk

Laboratory research

Breast cells are being grown in collagen gel Organise themselves into breast structure Now growing lactating breast cells

Comparisons made between cell types of resting and lactating breast resting breast has less secretory cells lactating breast has fewer basal cells Examine gene expression within resting and lactating breast cell cultures

Thank-you

Questions ?

