

Children's Vision Development & Eye Health: We are stronger together!

Sandra E. Staffieri AO

BAppSc(orth), PhD

Manager, Retinoblastoma Service - RCH
Senior Clinical Orthoptist / Research Lead, Ophthalmology
Department of Ophthalmology, Royal Children's Hospital; MCRI
sandra.staffieri@unimelb.edu.au

Research Fellow
Clinical Genetics Unit
Centre for Eye Research Australia
University of Melbourne

"You don't know what you don't know"

EDUCATION

VISION

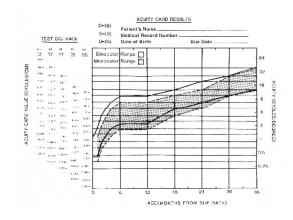
OCULAR ALIGNMENT

RED FLAGS

PROMOTING GOOD EYE HEALTH

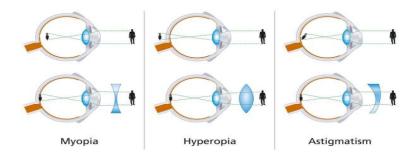
Nutrition

Screentime

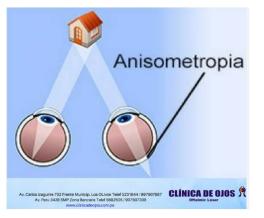

Vaccination

Outdoor time

- Develops from birth to 7-8y
- Interruption to vision development catastrophic
- Unilateral vision loss may be undetectable without formal assessment


Key message: "good visual behaviour does not mean good vision in both eyes"

Pathologies that affect vision - COMMON


Refractive error

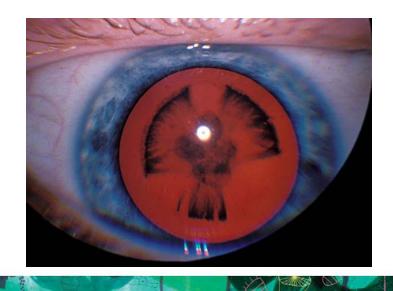
Short sighted

Long sighted

Asymmetrical cornea 'football'

- Anisometropia = unequal refractive error
- Amblyopia

Strabismus/Squint

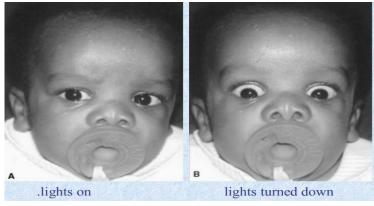


Ptosis (droopy eyelid)

Pathologies that affect vision - UNCOMMON

Cataract

Retinoblastoma


Can this child see? Do they have amblyopia?

Milestone (without auditory stimulus)	Development
Fixing target	3 weeks
Following target	4 weeks
Smile to a smile	5 weeks

Assessing Visual Acuity – 0-2yo

- Responds to light
- Preferential Looking
- 100s and 1000s
- Eye "popping" when lights turned off
- Objection to cover of either eye

Assessing Visual Acuity

2-4yrs:

- Pictures, Matching symbols or letters using charts @ 3m.
- LogMar-style chart if possible, as "Crowding" effect on LogMar Chart required for detection of mild amblyopia

≥4 yrs:

LogMar style charts with or without matching card @ 3m.

VA – Letter Matching – SSG - MIST

- Head turning peeping
- Always say YES even when incorrect answer is given

National Minimum Standard Framework for Vision Screening 3.5 - 5-year-olds

National Minimum Vision Screening Standard for 3.5-5-year-olds

Objective

To ensure all 3.5-5-year-old Australian children have access to integrated and people-centred eye care (IPEC), where vision screening programs with coordinated pathways for referral and follow up will help with early detection of vision problems and facilitate timely treatment.

Overarching principles

The National Minimum Standard for Vision Screening will be underpinned by the following principles:

- Vision screening to be conducted at an age young enough for the visual system to be amenable to treatment of significant visual conditions, including amblyopia, strabismus and refractive error.
- · Approach aims to maximise coverage and ensure access for all.
- Approach to be flexible, leverage existing state/territory platforms and accommodate local community needs, capacity, and infrastructure.
- Approach should adhere to the World Health Organization's Screening Programme Guide and produce valid information, leading to better child health outcomes.
- Screening must be supported by effective pathways for referral, follow up and access to appropriate eye care.
 Screening must be supported by proactive strategies to improve community and parental
- awareness, education, involvement and follow up.

 A broad workforce should be utilised to maximise reach of the screening program, with all
- A proad worktorce should be utilised to maximise reach of the screening program, with all screeners to meet required standards/skill levels.
 Data collection, evaluation and reporting to be embedded to drive continuous improvement
- and transparency.

Pre-screening regimen

Written information provided to parents/carers about vision screening should have the appropriate level of detail, avoid being overly complicated, and should be available in most commonly spoken community languages.

The following materials should be provided to parents/carers prior to the screening:

- 1. Written information about:
 - the screening process,
 - . the importance of vision screening for vision and eye health in children
 - · common eye conditions affecting children.

⁶ World Health Organization (2020). <u>Screening Programmes: a short quide, increase effectiveness, maximise benefits and minimize harm</u>, accessed 28 October 2021

National Framework for Vision Screening in 3.5-5-year-old - Revised draft 18/11//21

VISION2020 Preventive and Early Intervention Working Group - Children

- StEPS program NSW validated recommend use LogMAR vision test from 3.5y
- Adequate and appropriate training of the workforce, including cultural safety
- Increased promotion to parents/caregivers to increase uptake of screening
- Robust referral follow-up

Educate parents:

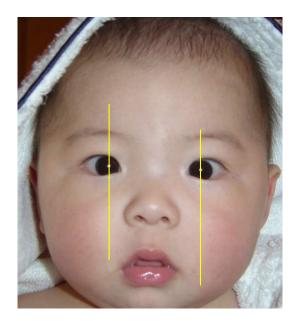
- Be alert to visual behaviour
- Remember unilateral vision loss may not be obvious to the parent
- Importance of VISION SCREENING!

OCULAR ALIGNMENT

Strabismus:

- Is it real?
- Will it get better?
- Could it be a sign of something more serious?

Strabismus – "squint that goes away"


Transient neonatal strabismus

- NORMAL ocular alignment
- intermittent
- Resolves by 2-4 months^{1,2}

¹Horwood A. 1993, JAAPOS; ²Sondhi N. et al. 1988 JAAPOS

Pseudo-strabismus: Optical Illusion

- Wide nasal fold/bridge of nose
- Intermittent looking sideways
- "see both ears"
- Corneal light reflex symmetry

Straightforward squint...?

Primary strabismus

- 2-4% population^{2,3}
- Multiple associations¹
 - FHx strabismus/amblyopia
 - Hyperopia/anisometropia
 - **Prematurity**
 - Down's syndrome
 - Developmental delay
 - Cerebral palsy
 - Fetal Alcohol Syndrome
 - Craniofacial syndromes
- 83% amblyopia < 3 yo^{2,3}
- Stereopsis [3D vision]⁴

Treatment

- Glasses refractive error
- Occlusion amblyopia
- Surgery

OCULAR ALIGNMENT

Educate parents:

- Be alert to frequency and direction
- Inquire about FHx of strabismus or other risk factors
- Strabismus can significantly affect vision development – early diagnosis and treatment is essential
- If it's a new finding are there any other concerns – signs or symptoms?
- Don't ignore! It could be the sign of something more serious

RED FLAGS

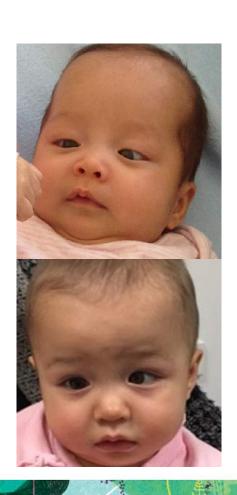
-PEE:

Leukocoria – white pupil

Epiphora

Eye movement:

- Strabismus
- Nystagmus


"Something worse...?

Primary Neurological Disorder

- Brain
 - Tumour
 - Hydrocephalus

> Additional symptoms

- Vomiting/headache
- Unsettled
- > Change in mobility
- > Seizures
- "unwell"

Intraocular disease

- Eye
 - Cataract
 - Retinoblastoma
 - Other...

> Well child

Visual behaviour unchanged (one eye only affected)

Original paper

Strabismus 0927-3972/00/US\$ 15.00

Strabismus – 2000, Vol. 8, No. 2, pp. 69-75 © Swets & Zeitlinger 2000

Accepted 21 March 2000

Underlying pathologies in secondary strabismus

A. Tülin Berk, MD F. Hakan Oner, MD A. Osman Saatci, MD

Dokuz Eylül University, School of Medicine, Department of Ophthalmology, Izmir, Turkey

Abstract

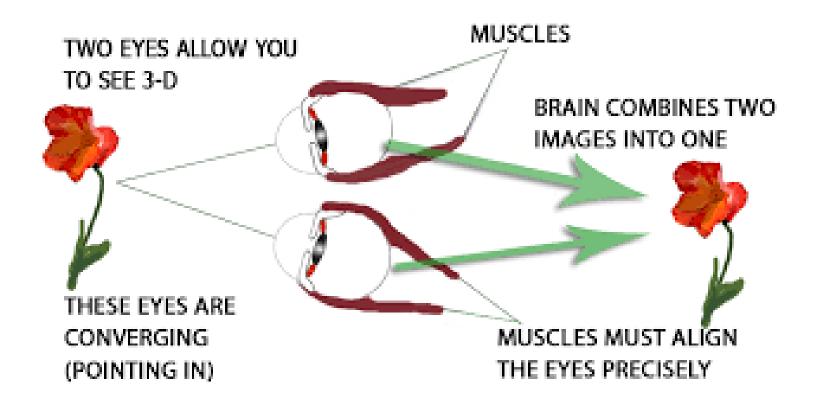
PURPOSE In this prospective cross-sectional observational study, the distribution of organic pathologies in patients initially presenting with strabismus was evaluated.

METHODS Thirty-one of 243 patients examined between May 1997 and May 1998 had strabismus due to organic causes and 28 patients had posterior segment abnormalities.

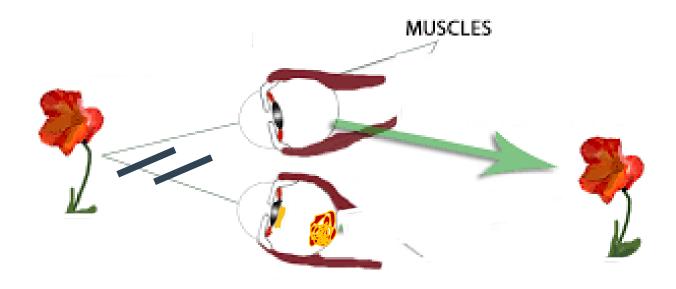
RESULTS Toxoplasma chorioretinitis, morning glory anomaly, toxocara retinopathy, retinopathy of prematurity and Coats' disease were the most common diagnoses. Eighteen patients (58%) had esotropia and 13 (42%) had exotropia. The mean age of onset of deviation was significantly lower in the esotropic patients. There was no correlation between the degree of visual impairment and direction of deviation.

CONCLUSIONS Our study strongly underlines the importance of fundus examination in each strabismic patient.

Key words Esotropia; exotropia; sensory esotropia; strabismus


Correspondence and reprint requests to: A. Tülin Berk, MD Mithatpaşa Cad. 628 – 2 D. 6 Küçükyalı, İzmir Turkey Tel.: +90 232 2433589 Fax: +90 232. 2590541

- 31/243 (12.7%) strabismus
- 58% esotropia (inward eye turn)
- 42% exotropia (outward eye turn


Nature of pathology	Number of patients
Toxoplasma chorioretinitis	5
Morning glory anomaly	4
Toxocara retinopathy	3
Retinopathy of prematurity	3
Coats' disease	3
Congenital cataract	3
Retinoblastoma	2
Toxocara endophthalmitis	I
X-linked juvenile retinoschisis	I
Optic disc hypoplasia	I
Tilted disc	I
Foveal scar	I
Best dystrophy	I
Optic atrophy	
Pseudoretinitis pigmentosa	I
Total	31

Binocular Vision – using 2 eyes together

www.visioncdl.com

Disruption of vision in one eye causes strabismus...

- Central vision is disrupted
- No incentive for the eyes to remain straight
- Affected eye will 'wander' in or out

4.5/12 old baby; ex-33/40 (3/12 corrected) Emerg. C-sect; nil complications postdelivery

c/o several weeks' Hx L intermit. Strabismus, becoming more frequent

Reassured by paediatrician

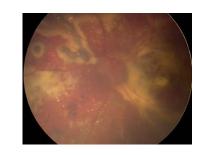
"normal, she was premature"

- TV story about leukocoria
- Referred to her own photos

Leukocoria

Pathology	
Congenital cataract	60%
Retinoblastoma	18.2%
Retinal Detachment	4.2%
PHPV (persistent hyperplastic primary vitreous/persistent fetal vasculature)	4.2%
Coats' disease	4.2%
Coloboma: iris/choroid/retinal	2.8%
Infection: Ocular toxocara/Endophthalmitis/ Panendophthalmitis/ Posterior Uveitis	5.6%

Cataract


PHPV

Toxocara

Retinoblastoma

Coat's disease

Haider et al. JAAPOS, 2008

Congenital cataract

- Leading cause of childhood blindness
- Congenital OR develops during early childhood
- Complete or partial
- <u>Familial</u>
- Unilateral or Bilateral
- Differential diagnosis vital
- Early diagnosis imperative

URGENT

Causes of cataract in children

Inherited

AD/AR/X-linked

Intrauterine infections

Rubella, Varicella, Toxoplasmosis, HSV

Drug Induced

Corticosteroids, chlorpromazine

Metabolic Disorders

- IDDM, Galactosaemia,
- Hypocalcaemia, Hypoglycaemia

Trauma

- Blunt/penetrating injury,
- AI/NAI, laser photocoagulation

Radiation induced

Chromosomal

- Trisomy 13, 18, 21 (Down's), Turner &
- Cri-du Chat Syndrome

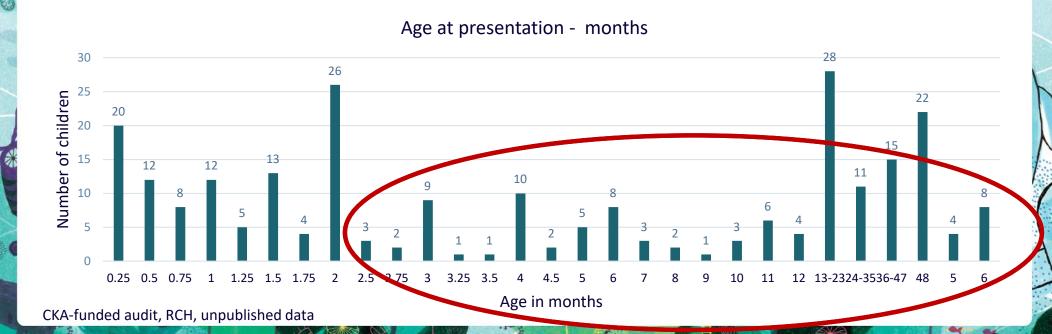
Renal Disease

Lowe, Alport & Hallerman-Streff-Francois syndrome

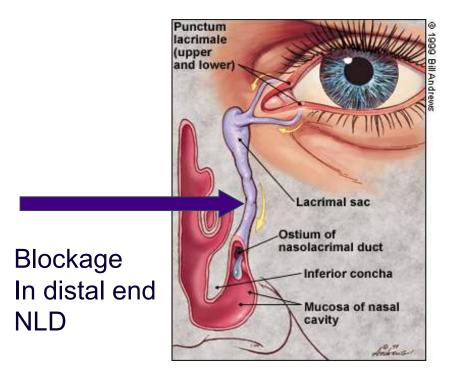
Skeletal Disease

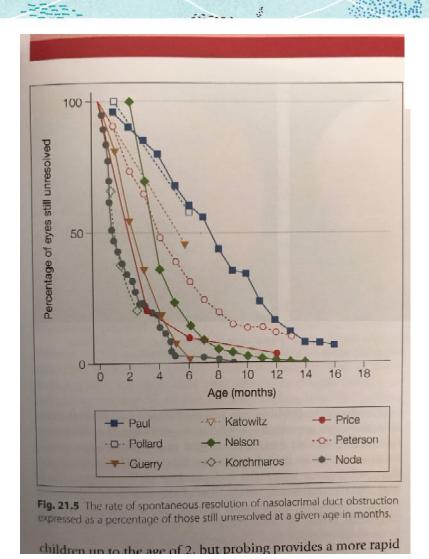
- Stickler, Rubenstien-Taybi, Bardet-Biedl,
- Conradi syndrome

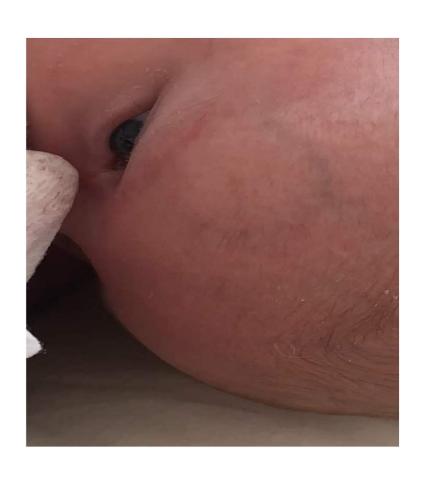
Neurometabolic Disease


Zellweger syndrome

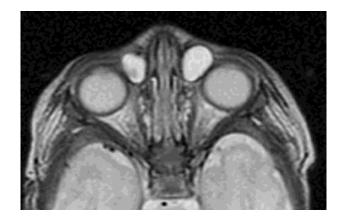
Muscular Disease


Dermatological

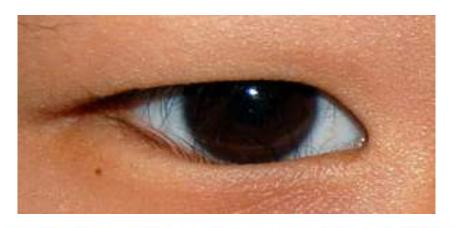

- Cockayne syndrome, Incontinentia pigmenti, progeria
- Crystalline cataract & uncombable hair syndrome!


Childhood Cataract Presentation - Victoria January 2014 - December 2019

Epiphora – watery eye

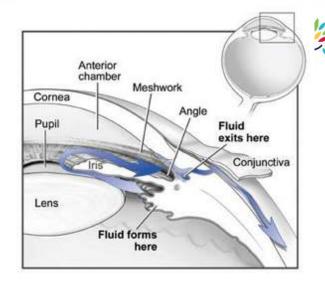


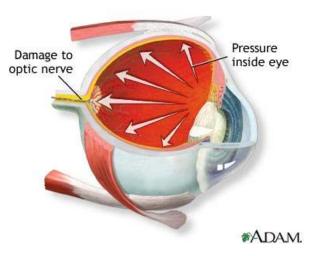
- Eye toilet make up remover pad
 - Make-up remover wipe
 - Dab don't wipe
 - Every feed keep dry and clean
- Massage
 - o Roll finger over infero-orbital bone
- Antibiotic drops/cream treat local infection only – not the cause – so massage is important


When to be more concerned...

Amniotocele

Epiblepharon

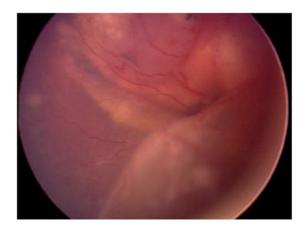




Congenital/Infantile Glaucoma

Watery eye with ANY other signs – refer urgently to GP

- Light sensitive
- Red eye
- Cloudy cornea
- Large eye buphthalmos
- Unsettled baby vomiting/malaise
- FHx childhood glaucoma often missed/omitted



Secondary Glaucoma

Sturge-Weber Syndrome

18/12 old – Hx intermittent squint 3/7 Hx – dilated pupil, painful LE eye RVA 3/3 LVA NPL RIOP 9mmHg LIOP 55mmHg LE – mild corneal haze and iris neovasc. Total retinal detachment, large posterior mass

Retinoblastoma - Masquerade

2 main 'signs' ALL parents need to know!

Leukocoria

- White pupil
- 'Glow'
- Cat's eye
- Glint

Strabismus

- Turned eye
- Squint
- Wondering eye
- "Wall eye"

- Visible some or all the time
- Turned eye varies in size or "small"
- Any direction (in/out/up/down)
- Child otherwise well
- Child still "sees well" (aka "picks fluff up off the floor"

Stronger together – referral pathways

RCH OPHTHALMOLOGY DEPARTMENT REFERRAL PRIORITY GUIDELINES

(Updated July 2024)

Under 16 years of age

Group 1 / Urgent

- Cataract
- Corneal opacity
 Diplopia new onset
- Glaucoma or Glaucoma Suspect
- Newborn Sticky eyes (up to 2 weeks age)
- Newborn Sticky eyes (up to 2 weeks age
- Nystagmus-new or sudden onset
- Neurological Strabismus
 Non-accidental injury (suspected)
- Painful red eye with loss of vision
- Paintul red eye with loss of vision
- Pale optic nerve head / optic atrophy
 Papilloedema/optic nerve head swelling
- Peri orbital and Orbital Cellulitis
- Prontocic
- Pupil defect recent onset
- · Retinopathy of prematurity
- Retinoblastoma
- Retinal tumors
- Retinal Detachment <2 years of age (will need co-management with Royal Victorian Eye and Ear Hospital) (Retinal Detachment >2 years of age refer to Royal Victorian Eye and Ear Hospital).
- Sudden visual loss
- Trauma
- Uveitis

Phone the Ophthalmology Registrar on call on (03) 9345 5522 to obtain appropriate prioritization.

Fax referral with parent's phone contact details to (03) 9345 5034

Please send any images or scans to assist with triage to: eye.triage@rch.org.au

Group 2 / Routine (3-12 months)

- Amblyopia*
- Haemangioma see Referral Guidelines by Diagnosis
- Chronic Chalazia (large)*
- Eyelids/malposition i.e. epiblepharon, ectropion, entropion, ptosis.
- Strabismus-Non Neurological*: Squint / esotropia / exotropia / hypertropia / hypotropia
- Nystagmus longstanding*
- Pupil defect longstanding*
- Dermoid*
- Sticky eyes/blocked tear ducts if symptoms >12 months*

May require follow up with local eye care provider in first instance.

Please send images or scans to assist with triage to eye.triage@rch.org.au

Age and other comorbidities will affect triage criteria.

* See referral guidelines by diagnosis.

See list of external eye care providers.

- 1. See "Referral Priority Guidelines by Diagnosis"
- 2. Ophthalmology registrar on-call via RCH Switchboard: (03) 9345 5522
- 3. Fax referral to: (03) 9345 5034
- 4. Call Ophthalmology Department: (03) 9345 6347
- 5. Referral Triage Co-Ordinator: (03) 9345 4117 or email eye.triage@rch.org.au to assist with triage

Group 3 / Referral will be rejected

- Routine vision check/screening
- Myopia (including myopia progression, & non-syndromic <8 Dioptres)
- Spectacle/glasses check
- Child older than 8 years old who requires glasses for any reason and has not required amblyopia treatment
- Child older than 10 years old who requires glasses for any reason and has had amblyopia treatment in the past
- Chalazia (Meibomian cyst, eyelid cyst unless large and chronic) *
- All Itchy eyes/Hay fever/Blepharitis* (unless corneal involvement, or referred from internal source e.g. allergy/immunology)
- All new referrals for children >12 years old for longstanding strabismus, blurred vision or headaches.
- Colour vision defect (isolated)*

These conditions are not routinely seen at the Royal Children's Hospital and the referral will be rejected.

Recommend referral to and follow up with external eye care provider.

See list of external eye care providers.

If patient has developmental delay and/or complex medical history and/or requires interpreter - consider referral to the Australian College of Optometry

* See referral guidelines by diagnosis.

RCH COLLABORATIVE CARE MODEL

- Referral to GP...
- Referral to local optometrist for initial assessment
- RCH partners with Melbourne Eye Care Clinic – University of Melbourne College of **Optometry**

Evaluating a collaborative paediatric eye-care model between optometry and ophthalmology: a clinical audit

Andrew Huhtanen^a, Anu Mathew^a, Catherine Lewis^a, Tim Martin^a, Marianne Piano 💇 and Flora Hui 💇

*Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia; *Department of Ophthalmology, Royal Children's Hospital, Melbourne, Australia: 'Melbourne Teaching Health Clinics, University of Melbourne, Melbourne, Australia

Clinical relevance: Collaborative care models between optometry and ophthalmology can be a safe and viable way to improve patient access to paediatric eye-care services and reduce hospital

Background: Long waiting lists exist for paediatric ophthalmology services Australia-wide, yet some patients who are referred to the hospital may not require hospital-based treatment and instead can be seen in primary care. This audit assessed the safety and standard of care provided in a paediatric Collaborative are model between a student-led university optometry clinic and a public ophthalmol-ogy clinic. Supervising optometrists in the optometry clinic were experienced in the care of paediatric patients. Collaborative care was provided for children with juvenile (idiopathic arthritis, craniosynos-tosis (without strabismus/amblyopia), nasolacrimal duct obstruction or chalazion, following a co-

developed care protocol.

Methods Outcome date note adult moughput, re-referals, waiting list removals were collected through both methods outcome date note adult reindenised ecord selection arous the four included conditional values of the conditional conditional values undertaken, assessing percentage compliance against the co-developed care model protocol. Patient satisfaction with the collaborative care clinic was assessed by patient reported experience survey for clinic attendees in a one-month period.

Results: One hundred and fifty-year of 169 children offered the care pathway received care through

Results: Ohe hundred and antity-seven of 1864 o'hildren offered the care pathway received care through Results: Ohe hundred and antity-seven of 1864 o'hildren offered the Care pathway received care through Royal. Children's Hospital o'phthalmology waiting list. Collaborative care protocol accompliance was 95%. Twenty-intendibled meer er-eifered for hildren waiter eventure for large type and 11 children completed the survey, reporting 100% satisfaction. Conclusions: Collaborative care between hospital-based ophthalmology and university-based opto-metry can be effectively calculated the survey. Provided the control of the conclusions: Collaborative care between hospital-based optimal high clinical andherence to protocols and high family satisfaction.

Promoting Good Eye Health

Nutrition

Vaccination

Screentime

Outdoor time

NUTRITION

OCULAR COMPLICATIONS OF NUTRITIONAL DEFICIENCIES

CORNEAL XEROSIS

BITOT'S SPOTS

CORNEAL ULCERATION

FATIGUE AND PARALYSIS OF **EXTERNAL RECTUS MUSCLES**

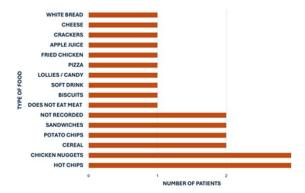
POSTERIOR SUBCAPSULAR

PIGMENTARY DEGENERATION

SUBCONJUNCTIVAL HAEMORRHAGE

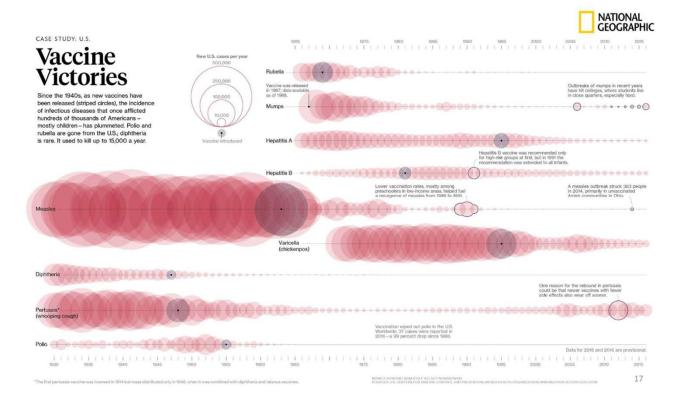
PAPILLOEDEMA

NIGHT BLINDESS


Acknowledgement: N Kaur

RESULTS

- Average age at diagnosis: 9.1 years old.
- 13 cases identified: 10 male, 3 female.



- 7 of 13 patients (54%) had autism spectrum disorder (ASD) as a comorbidity.
- Most patient diagnosed in 2024, suggesting rising awareness and screening need.
- 46% referrals from ophthalmologists for vision concerns (blur, pain, night blindness).
- Dietary trend: highly processed, low-nutrient foods. The children in this cohort were found to be consuming only a single food item as their entire diet, including::

- Most common findings: optic atrophy & xerophthalmia, linked mainly to vitamin A & B12
- 69% of patient with permanent unilateral/bilateral vision loss; 4/13 now legally blind.
- 46% assessments were not age-appropriate (e.g. ASD), likely underestimating vision loss.

VACCINATION

Acknowledgement: Prof. DA Mackey AO

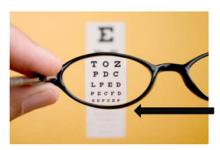
Blinding complications for vaccine-preventable disease

6 infections prevented by vaccines

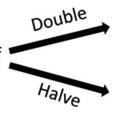
- haemophilus influenza type B
- Measles
- Rubella
- Meningococcal meningitis
- Chickenpox
- Shingles

Ocular complications

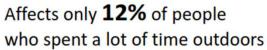
- Corneal scarring
- Cataract
- Uveitis
- Retinopathy
- Optic neuropathy
- Cortical blindness


OUTDOOR TIME

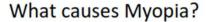
Myopia in Children



Myopia or short-sightedness is where people need glasses to see in the distance


Normal Vision 6/6 metres or 20/20 feet

Affects **25%** of 20-year-olds in Australia


Predicted to affects **50%** of the world's population by 2050

Holden BA et al. Ophthalmology 2016 Lee SS-Y et al. JAMA Ophthalmology 2022 Franchina M et al. Med J Aust 2014

Genes

Mum & Dad with myopia

0 parents myopia risk = **20**%

1 parent myopia risk = 33%

2 parents myopia risk = 44%

Environment

↓ Time Outdoors

↑ Near Work

↑ Education

Three Intertwined Risk Factors

Hysi PG et al. Nat Genet. 2020 Lee SS-Y et al. JAMA Ophthalmology 2022 Lee SS-Y et al. Invet Ophthalmol Vis Sci 2023 Lingham G et al. Sci Rep 2021

Acknowledgement: Prof. DA Mackey AO

Increased Time Outdoors Prevents Myopia

Outdoor Activity Reduces the Prevalence of Myopia in Children

Kathryn A. Bose, PhD, ¹ Ian G. Morgan, BSc, PhD, ² Jenny Ip, MBBS, ³ Annette Kifley, MBBS, MAppStat, ³ Son Huynh, MBBS, MMed (ClinEpit), ³ Wayne Smith, BMed, PhD, ⁴ Paul Mückell, MD, PhD, ³

f myopia in school-aged children.
Design: Cross-sectional study of 2 age samples from 51 Sydney schools, selected using a random cluster

Design: Cross-sectional study of 2 age samples from 51 Sydrey schools, selected using a random cluster design.

Participation from the count of the selection of the Sydrey Myselection of the Sydrey Myselection of the Sydrey Myselection 2003 to 2005.

Methods: Children had a comprehensive eye seaminisation, including cycloplegic refraction. Parents and children completed detailed questionnaires on activity.

Main Outcome Measures: Myselection prevailed in the selection of the se

Myopia is an eye condition that poses significant costs for optical correction and costs due to associated catasters¹³ and glancomen. ¹⁶ in the longer term. In the later part of the 20th centary in highly urbanized Earl Asian regions. ¹⁶ the prevalence of highly urbanized Earl Asian regions. ¹⁶ the prevalence of large, now records (here prof. ¹⁸ In parallel with the increase in overall respots, there has been a rate in the prevalence of high propiet (see "deeper (10)). ¹⁸ "the parallel with the increase in overall respots, there has been a rate in the prevalence of high propiet (see "deeper (10)). ¹⁸ "the is associated with interested levels of visual impairment and bindianes, "givenity due to choiseristical depressions and a genetic contribution, myopia is generally believed to have a bindiane, "givenity due to choiserism depressions. ¹⁸ are a midificatival etaclogy, and the cupit free in prevalence of propiets. ¹⁸ are a midificatival etaclogy, and the cupit free in prevalence of myopia, ¹⁸ which places are producinent in determining the current patterns of myopia.

netment of Ophthalisaskop (Cestre for Vision Recent), Assertia, Asterdia, ital) and Wommend Millerstons Institute, Sydney, Australia, the for Citrical Epidemiology and Biostatistics, University of New-Newcorks, Australia.

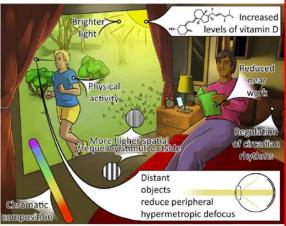
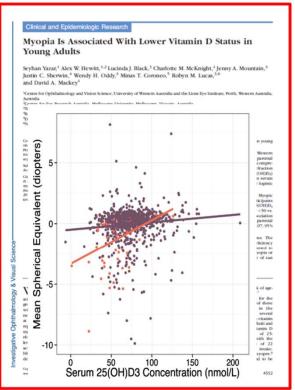
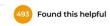



Figure 1 Spending more time outdoors may reduce risk of myopia via multiple means.

SCREEN TIME



Suitable for 2-5 years

Screen time and digital technology use for children 2-5 years: tips for balance

Key points

- Screen time and digital technology use can be part of a healthy lifestyle when balanced with other activities.
- Activities that are important for preschooler development include physical play, creative play, reading, sleep and socialising.
- Family rules can help balance screen time and other activities for preschoolers.

You might also like

https://raisingchildren.net.au/preschoolers/media-technology/screentime-healthy-screen-use/healthy-screen-time-2-5-years

"You don't know what you don't know..."

EYE CONDITIONS

A glint or squint should make you think

How to recognise early signs of eye problems in babies and young children.

Your baby's eyes and what you need to know...

Looking after your baby can be overwhelming. There is so much to learn and know.

Like all parents, you want the best for your baby.

You will spend many hours looking at your baby's eyes and taking lots of photographs. What you notice can be very important.

This pamphlet will help you recognise early signs of eye problems.

Saving sight. Changing lives.

Healthy Eyes Guide

https://www.cera.org.au/eye-health-resources/

https://www.cera.org.au/glint-or-squint/

- Prevention is better than a cure!
- Early diagnosis is the next best thing...